473 research outputs found

    Synergy-based Hand Pose Sensing: Reconstruction Enhancement

    Get PDF
    Low-cost sensing gloves for reconstruction posture provide measurements which are limited under several regards. They are generated through an imperfectly known model, are subject to noise, and may be less than the number of Degrees of Freedom (DoFs) of the hand. Under these conditions, direct reconstruction of the hand posture is an ill-posed problem, and performance can be very poor. This paper examines the problem of estimating the posture of a human hand using(low-cost) sensing gloves, and how to improve their performance by exploiting the knowledge on how humans most frequently use their hands. To increase the accuracy of pose reconstruction without modifying the glove hardware - hence basically at no extra cost - we propose to collect, organize, and exploit information on the probabilistic distribution of human hand poses in common tasks. We discuss how a database of such an a priori information can be built, represented in a hierarchy of correlation patterns or postural synergies, and fused with glove data in a consistent way, so as to provide a good hand pose reconstruction in spite of insufficient and inaccurate sensing data. Simulations and experiments on a low-cost glove are reported which demonstrate the effectiveness of the proposed techniques.Comment: Submitted to International Journal of Robotics Research (2012

    Consensus Computation in Unreliable Networks: A System Theoretic Approach

    Full text link
    This work addresses the problem of ensuring trustworthy computation in a linear consensus network. A solution to this problem is relevant for several tasks in multi-agent systems including motion coordination, clock synchronization, and cooperative estimation. In a linear consensus network, we allow for the presence of misbehaving agents, whose behavior deviate from the nominal consensus evolution. We model misbehaviors as unknown and unmeasurable inputs affecting the network, and we cast the misbehavior detection and identification problem into an unknown-input system theoretic framework. We consider two extreme cases of misbehaving agents, namely faulty (non-colluding) and malicious (Byzantine) agents. First, we characterize the set of inputs that allow misbehaving agents to affect the consensus network while remaining undetected and/or unidentified from certain observing agents. Second, we provide worst-case bounds for the number of concurrent faulty or malicious agents that can be detected and identified. Precisely, the consensus network needs to be 2k+1 (resp. k+1) connected for k malicious (resp. faulty) agents to be generically detectable and identifiable by every well behaving agent. Third, we quantify the effect of undetectable inputs on the final consensus value. Fourth, we design three algorithms to detect and identify misbehaving agents. The first and the second algorithm apply fault detection techniques, and affords complete detection and identification if global knowledge of the network is available to each agent, at a high computational cost. The third algorithm is designed to exploit the presence in the network of weakly interconnected subparts, and provides local detection and identification of misbehaving agents whose behavior deviates more than a threshold, which is quantified in terms of the interconnection structure

    Synergy-Based Hand Pose Sensing: Optimal Glove Design

    Get PDF
    In this paper we study the problem of improving human hand pose sensing device performance by exploiting the knowledge on how humans most frequently use their hands in grasping tasks. In a companion paper we studied the problem of maximizing the reconstruction accuracy of the hand pose from partial and noisy data provided by any given pose sensing device (a sensorized "glove") taking into account statistical a priori information. In this paper we consider the dual problem of how to design pose sensing devices, i.e. how and where to place sensors on a glove, to get maximum information about the actual hand posture. We study the continuous case, whereas individual sensing elements in the glove measure a linear combination of joint angles, the discrete case, whereas each measure corresponds to a single joint angle, and the most general hybrid case, whereas both continuous and discrete sensing elements are available. The objective is to provide, for given a priori information and fixed number of measurements, the optimal design minimizing in average the reconstruction error. Solutions relying on the geometrical synergy definition as well as gradient flow-based techniques are provided. Simulations of reconstruction performance show the effectiveness of the proposed optimal design.Comment: Submitted to International Journal of Robotics Research 201

    On the Robust Synthesis of Logical Consensus Algorithms for Distributed Intrusion Detection

    Get PDF
    We introduce a novel consensus mechanism by which the agents of a network can reach an agreement on the value of a shared logical vector function depending on binary input events. Based on results on the convergence of finite-state iteration systems, we provide a technique to design logical consensus systems that minimizing the number of messages to be exchanged and the number of steps before consensus is reached, and tolerating a bounded number of failed or malicious agents. We provide sufficient joint conditions on the input visibility and the communication topology for the method’s applicability. We describe the application of our method to two distributed network intrusion detection problems

    Social Robotics and Societies of Robots

    Get PDF
    The sustainability of social robotics, like other ambitious research programs, depends on the identification of lines of inquiry that are coherent with its visionary goals while satisfying more stringent constraints of feasibility and near-term payoffs. Within these constraints, this article outlines one line of inquiry that seems especially viable: development of a society of robots operating within the physical environments of everyday human life, developing rich robot–robot social exchanges, and yet, refraining from any physical contact with human beings. To pursue this line of inquiry effectively, sustained interactions between specialized research communities in robotics are needed. Notably, suitable robotic hand design and control principles must be adopted to achieve proper robotic manipulation of objects designed for human hands that one finds in human habitats. The Pisa-IIT SoftHand project promises to meet these manipulation needs by a principled combination of sensorimotor synergies and soft robotics actuation, which aims at capturing how the biomechanical structure and neural control strategies of the human hand interact so as to simplify and solve both control and sensing problems

    Correction of Force Errors for Flexible Manipulators in Quasi-Static Conditions

    Get PDF
    This paper deals with the problem of controlling the interactions of flexible manipulators with their environment. For executing a force control task, a manipulator with intrinsic (mechanical) compliance has some advantages over the rigid manipulators commonly employed in position control tasks. In particular, stability margins of the force control loop are increased, and robustness to uncertainties in the model of the environment is improved for compliant arms. On the other hand, the deformations of the arm under the applied load give rise to errors, that ultimately reflect in force control errors. This paper addresses the problem of evaluating these errors, and of compensating for them with suitable joint angle corrections. A solution to this problem is proposed in the simplifying assumptions that an accurate model of the arm flexibility is known, and that quasi-static corrections are of interest.MIT Artificial Intelligence Laborator

    A Packet-Switching Strategy for Uncertain Nonlinear Networked Control Systems

    No full text
    International audienceThis paper addresses the problem of stabilizing uncertain nonlinear plants over a shared limited-bandwidth packet-switching network for which both the time between consecutive accesses to each node (MATI) and the transmission and processing delays (MAD) for measurements and control packets are bounded. While conventional control loops are designed to work with circuit-switching networks, where dedicated communication channels provide almost constant bit rate and delay, many networks, such as Ethernet, organize data transmission in packets, carrying larger amount of information at less predictable rates. To avoid the bandwidth waste due to the relatively large overhead inherent to packet transmission, we exploit the packet payload to carry longer control sequences. To this aim we adopt a model-based approach to remotely compute a predictive control signal on a suitable time horizon, which leads to effectively reducing the bandwidth required to guarantee stability. Communications are assumed to be ruled by a rather general protocol model, which encompasses many protocols used in practice. As a distinct improvement over the state of the art, our result is shown to be robust with respect to sector-bounded uncertainties in the plant model. Namely, an explicit bound on the combined effects of MATI and MAD is provided as a function of the basin of attraction and the model accuracy

    Exploiting Packet Size in Uncertain Nonlinear Networked Control Systems

    No full text
    12International audienceThis paper addresses the problem of stabilizing uncertain nonlinear plants over a shared limited-bandwidth packet-switching network. While conventional control loops are designed to work with circuit-switching networks, where dedicated communication channels provide almost constant bit rate and delay, many networks, such as Ethernet, organize data transmission in packets, carrying larger amount of information at less predictable rates. To avoid the bandwidth waste due to the relatively large overhead inherent to packet transmission, we exploit the packet payload to carry longer control sequences. To this aim we adopt a model-based approach to remotely compute a predictive control signal on a suitable time horizon, which leads to effectively reducing the bandwidth required to guarantee stability. We consider networks for which both the time between consecutive accesses to each node (MATI) and the transmission and processing delays (MAD) for measurements and control packets are bounded. Communications are assumed to be ruled by a rather general protocol model, which encompasses many protocols used in practice. As a distinct improvement over the state of the art, our result is shown to be robust with respect to sector-bounded uncertainties in the plant model. Namely, an explicit bound on the combined effects of MATI and MAD is provided as a function of the basin of attraction and the model accuracy. A case study is presented to appreciate the improvements induced by the packet-based control strategy over existing methods
    • …
    corecore